
SILIGURI INSTITUTE OF

TECHNOLOGY

PROJ- CS881

Expense Tracker System

BY

IT_PROJ_2023_03

Name of Students Roll No.

1. Abhi Kumar Sahu 11900219051

2. Alkesh Raj 11900219054

3. Divyam Mishra 11900219036

4. Rudranil Ghosh 11900219032

Under the Guidance

of

 DR. ASIT BARMAN

Submitted to the Department of Information Technology in partial fulfillment of the requirements

for the award of the degree Bachelor of Technology in Information Technology.

Year of Submission: 2023

Siliguri Institute of Technology
P.O. SUKNA, SILIGURI, DIST. DARJEELING, PIN: 734009

Tel: (0353)2778002/04, Fax: (0353) 2778003

P a g e | 1

DECLARATION

This is to certify that the Report entitled “Expense Tracker System” which is submitted by me in

partial fulfillment of the requirement for the award of degree B.Tech. in Information Technology at

Siliguri Institute of Technology under Maulana Abul Kalam Azad University of Technology, West

Bengal. We took the help of other materials in our dissertation which have been properly acknowledged.

This report has not been submitted to any other Institute for the award of any other degree.

Date : 25 May 2023

SN Name of the Student Roll No Signature

1 Abhi Kumar Sahu 11900219051

2 Alkesh Raj 11900219054

3 Divyam Mishra 11900219036

4 Rudranil Ghosh 11900219032

P a g e | 2

CERTIFICATE

This is to certify that the project report entitled ___________________

___________________” Expense Tracker System ”______________________________

submitted to the Department of Information Technology of Siliguri Institute of Technology in

partial fulfillment of the requirement for the award of the degree of Bachelor of Technology in

Information Technology during the academic year 2022-23, is a bonafide record of the project work

carried out by them under my guidance and supervision.

 Project Group Number :

SN Name of the students Registration No Roll No

1. Abhi Kumar Sahu 035520 OF 2019-20 11900219051

2. Alkesh Raj 035511 OF 2019-20 11900219054

3. Divyam Mishra 035826 OF 2019-20 11900219036

4. Rudranil Ghosh 036059 OF 2019-20 11900219032

Signature of Project Guide

Name of the Guide:

--

Signature of the HOD

 Department of Information Technology

P a g e | 3

ACKNOWLEDGEMENT

I would like to express my heartfelt gratitude and appreciation to the esteemed professors who have

played a significant role in the successful completion of this project. Their invaluable guidance,

encouragement, and expertise have been instrumental in shaping the project's outcome, and I am truly

grateful for their unwavering support throughout this journey.

First and foremost, I would like to extend my deepest gratitude to Dr. Asit Barman, whose insightful

guidance and mentorship have been indispensable throughout this project. Your vast knowledge,

dedication to teaching, and willingness to share your expertise have truly inspired me to push my

boundaries and strive for excellence. Your constructive feedback and valuable suggestions have not

only improved the quality of this project but have also broadened my understanding of the subject

matter.

Lastly, I would like to express my heartfelt thanks to my family and friends for their unwavering

support, encouragement, and understanding throughout this project. Their belief in my abilities and

their constant motivation has been crucial in overcoming challenges and reaching the finish line.

Signature of all the group members with the date

1.

2.

3.

4.

P a g e | 4

ABSTRACT

The Expense Tracker System is an Android application developed using Android Studio and Java

programming language. It leverages the Firebase backend service provider, specifically Firestore as

the real-time database and Firebase Authentication for user authentication. The application aims to

provide users with a convenient and efficient solution for tracking and managing their expenses. The

system analysis phase involved defining the software requirements, applying agile software

engineering paradigms, and creating various diagrams to understand the system's structure and

behaviour. The system design incorporated modularization, data integrity measures, database design,

and user interface design principles to ensure scalability, maintainability, and usability. Thorough

testing techniques and strategies were employed, including unit testing, integration testing, functional

testing, and performance testing, to ensure the reliability and functionality of the application.

Debugging and code improvement practices were applied to enhance code quality and maintainability.

To ensure system security, the Expense Tracker System implemented database and data security

measures, such as encryption and access control mechanisms. User profiles and access rights were

created using Firebase Authentication. The application generates informative reports to provide users

with insights into their expenses, and sample report layouts were provided. The recommendations for

the Expense Tracker System include expanding platform compatibility, enhancing security measures,

integrating with additional services, optimizing performance, considering localization and

internationalization, and allocating resources for ongoing maintenance and support. By implementing

these recommendations, the Expense Tracker System can further enhance its functionality, usability,

and security, meeting the evolving needs of users and ensuring its competitiveness in the market.

P a g e | 5

TABLE OF CONTENT

S.No. Topics Page No.

1. INTRODUCTION 7

2. SYSTEM ANALYSIS 8

i. Identification of Need

ii. Preliminary Investigation

iii. Feasibility Study

iv. Project Planning

a. Project Scheduling

b. Resource Planning

c. Risk Assessment

d. Budgeting

e. Quality Assurance

f. Documentation

v. Software Requirement Specifications (SRS):

a. Compatibility

b. User Registration

c. Expense Tracking

d. Categorization

e. Budget Management

f. Data Backup and Synchronization

g. Reporting and Analysis

h. User Interface

vi. Control Flow diagram:

3. SYSTEM DESIGN 12

i. Modularisation details

a. User Management Module

b. Expense Tracking Module

c. Category Management Module

d. Budget Management Module

e. Reporting Module

ii. Data integrity and constraints

a. Unique Constraints

b. Foreign Key Constraints

c. Validation Constraints

iii. Database design/Procedural Design/Object Oriented Design

iv. User Interface Design

a. Responsive Design

b. Intuitive Navigation

c. User-Friendly Forms

d. Visual Feedback

e. Consistent Theme and Branding

4. CODING 15

a. Main Activity

b. DashBoard Activity

P a g e | 6

c. Time and Date Maintaining Activity

d. SignUp Activity

e. Activity_Main XML

f. DashBoard Activity XML

5. TESTING 36

a. Some Screenshots of our Application during Testing

b. Debugging and Code Improvement

i. Refactoring

ii. Code Review

iii. Performance Optimization

iv. Error Handling and Exception Handling

6. SYSTEM SECURITY MEASURES 40

a. Database/Data Security

i. Encryption

ii. Secure Database Connection

iii. Data Backup and Recovery

iv. Database Access Control

b. Creation of User Profiles and Access Rights:

i. User Authentication

ii. User Access Rights

iii. Password Policies

iv. Session Management

7. COST ESTIMATION OF THE PROJECT 41

a. Development Costs

b. Infrastructure Costs

c. Maintenance Costs

d. Miscellaneous Costs

8. REPORTS 42

a. Expense Summary Report

b. Budget Analysis Report

c. Monthly Expense Trend Report:

d. Category-wise Expense Report

9. SAMPLE LAYOUT 43

10. CONCLUSION 44

11. REFERENCE 45

P a g e | 7

INTRODUCTION

The Expense Tracker System is an innovative Android application designed to provide users with a

convenient and user-friendly solution for managing their expenses effectively. With the increasing

complexity of modern financial transactions and the need for individuals to maintain a clear

understanding of their spending habits, this application offers a comprehensive set of features to track,

categorize, and analyze expenses on the go.

The application leverages the capabilities of Android devices to provide a seamless experience for

users, allowing them to effortlessly record their expenses and monitor their financial activities. Users

can easily input details of their expenses, including amount, date, category, and additional notes,

providing a comprehensive record of their financial transactions. The intuitive user interface ensures

a smooth user experience, with clear navigation and easy-to-access functionalities.

Key features of the Expense Tracker System include personalized expense categories, allowing users

to create custom categories that align with their spending patterns. This flexibility enables users to

accurately categorize their expenses, facilitating insightful data analysis and budget planning.

Additionally, the application provides visual representations of spending patterns, offering graphical

representations and detailed reports that highlight areas of expenditure.

Furthermore, the Expense Tracker System offers a range of financial management tools, such as

budget setting and expense notifications. Users can set personalized budgets and receive timely

notifications to stay informed about their spending limits and avoid overspending. This proactive

approach to financial management empowers users to make informed decisions, save money, and

maintain better control over their financial health.

Data security is a top priority in the Expense Tracker System. The application implements robust

encryption techniques to protect sensitive financial information, ensuring the privacy and

confidentiality of user data. Regular backups and synchronization options across multiple devices

provide data redundancy and accessibility.

The Expense Tracker System represents a valuable tool for individuals, families, and small businesses,

enabling them to achieve financial stability and make informed financial decisions. By leveraging the

power and convenience of Android devices, this application delivers an efficient and user-friendly

solution for tracking and managing expenses.

P a g e | 8

SYSTEM ANALYSIS

1. Identification of Need:

The Expense Tracker System is being developed to address the need for an efficient and user-friendly

solution for tracking and managing expenses. Many individuals and organizations face challenges in

keeping track of their expenses, leading to financial inefficiencies and difficulties in budgeting. The

Expense Tracker System aims to provide a centralized platform that simplifies expense management,

enhances financial control, and enables informed decision-making.

2. Preliminary Investigation:

During the preliminary investigation, the current expense management practices and challenges were

identified. Interviews, surveys, and discussions with potential users were conducted to gather

requirements and understand their pain points. The investigation revealed that manual expense

tracking methods were time-consuming, error-prone, and lacked comprehensive reporting

capabilities. The need for an automated system that streamlines expense tracking and provides real-

time insights became evident.

3. Feasibility Study:

A feasibility study was conducted to assess the viability of developing the Expense Tracker System.

The study analyzed technical, economic, operational, and schedule feasibility. It was determined that

the system is technically feasible, considering the availability of suitable technologies and resources.

Economically, the system is justified as it offers potential cost savings, improved financial

management, and increased productivity. The operational feasibility was established by assessing the

system's compatibility with existing processes and infrastructure. Lastly, the project was deemed

schedule feasible based on resource availability and estimated development timelines.

P a g e | 9

4. Project Planning:

i. Project Scheduling:

The project scheduling phase involved breaking down the development process into

manageable tasks and establishing a timeline for their completion. A Gantt chart was created

to illustrate the project's schedule, milestones, and dependencies. The development tasks

included requirements gathering, system design, database creation, user interface

development, backend implementation, testing, and deployment. Each task was allocated a

specific duration, and their interdependencies were carefully identified and accounted for in

the schedule.

ii. Resource Planning:

A comprehensive resource plan was prepared, considering the human resources, hardware,

software, and other required resources for the project. The team composition, roles, and

responsibilities were defined. The hardware and software infrastructure necessary for

development and deployment were identified, ensuring compatibility and scalability.

iii. Risk Assessment:

A risk assessment was performed to identify potential risks that could impact the project's

success. Risks such as technology limitations, scope creep, resource constraints, and external

dependencies were identified. Strategies to mitigate and manage these risks were devised,

including regular progress monitoring, effective communication, contingency planning, and

agile development methodologies.

iv. Budgeting:

A budget was developed to estimate the project's financial requirements. It included costs for

human resources, hardware, software licenses, infrastructure, training, and contingency. The

budget was aligned with the project's objectives and constraints, and it accounted for potential

variations and unforeseen expenses.

P a g e | 10

v. Quality Assurance:

Quality assurance processes were defined to ensure that the Expense Tracker System meets

the highest standards. Quality checkpoints, code reviews, and comprehensive testing

procedures were implemented at various stages of development. User feedback and

acceptance testing were incorporated to validate the system's functionality, usability, and

performance.

vi. Documentation:

A documentation plan was formulated to capture the system's specifications, design,

development guidelines, user manuals, and troubleshooting documentation. The plan aimed

to facilitate future system maintenance, updates, and knowledge transfer.

5. Software Requirement Specifications (SRS):

The Expense Tracker System is an Android application designed to help users track and manage their

expenses efficiently. The software requirements for this application are as follows:

i. Compatibility: The application should be compatible with Android devices running on

version 5.0 (Lollipop) and above.

ii. User Registration: The system should allow users to register an account with a unique

username and password.

iii. Expense Tracking: Users should be able to add, edit, and delete expenses. Each expense

entry should include details such as date, category, description, and amount.

iv. Categorization: The system should provide predefined categories (e.g., food,

transportation, utilities) for users to assign to their expenses. Users should also have the ability

to create custom categories.

v. Budget Management: Users should be able to set monthly or weekly budgets for

different expense categories. The system should notify users when they exceed their budget

P a g e | 11

limits.

vi. Data Backup and Synchronization: The application should support data backup and

synchronization across multiple devices to ensure that users' expense data is always

accessible and up to date.

vii. Reporting and Analysis: The system should generate reports and visualizations to help

users analyze their spending patterns and identify areas for improvement.

viii. User Interface: The application should have an intuitive and user-friendly interface, with

easy navigation and responsive design.

6. Control Flow diagram:

P a g e | 12

SYSTEM DESIGN

1. Modularization Details:

The Expense Tracker System is designed using a modular approach to enhance maintainability,

scalability, and code reusability. The application can be divided into the following modules:

i. User Management Module: Handles user registration, login, and authentication

functionalities.

ii. Expense Tracking Module: Manages the creation, modification, and deletion of

expense entries.

iii. Category Management Module: Deals with the management of predefined and custom

expense categories.

iv. Budget Management Module: Allows users to set budget limits for different expense

categories.

v. Reporting Module: Generates reports and visualizations based on expense data.

By dividing the application into these modules, it becomes easier to develop and maintain each module

separately, facilitating parallel development and efficient bug fixing.

2. Data Integrity and Constraints:

To ensure data integrity and maintain consistency, the Expense Tracker System incorporates the

following constraints:

i. Unique Constraints: Each user account is associated with a unique username to avoid

duplication. Similarly, each expense entry is assigned a unique identifier.

ii. Foreign Key Constraints: Expense entries are linked to their respective users and

P a g e | 13

categories through foreign key references, ensuring data consistency and referential integrity.

iii. Validation Constraints: The system enforces validation rules on input data, such as

checking for valid dates, non-negative amounts, and valid category selections.

These constraints help maintain the integrity of the data stored in the application's database.

3. Database Design/Procedural Design/Object-Oriented

 Design:

Database Design: The Expense Tracker System utilizes a relational database to store user

information, expense details, category data, and budget limits. The database schema is designed with

appropriate tables, columns, and relationships to efficiently store and retrieve data. Normalization

techniques are applied to eliminate data redundancy and improve database performance.

Procedural Design: The application follows a procedural design approach for implementing

business logic and system operations. Each module consists of functions or methods responsible for

specific tasks, such as user registration, expense creation, budget management, and reporting. The

procedural design allows for better code organization, readability, and maintainability.

Object-Oriented Design: Object-oriented design principles are employed to model entities and

their behavior. Objects are created to represent entities such as users, expenses, categories, and

budgets. These objects encapsulate data and methods, providing modularity, reusability, and

flexibility. Inheritance, polymorphism, and encapsulation are utilized to achieve a robust and

extensible design.

4. User Interface Design:

The User Interface (UI) design of the Expense Tracker System focuses on delivering a seamless and

intuitive user experience. The following design considerations are taken into account:

i. Responsive Design: The UI is designed to adapt to different screen sizes and orientations,

providing optimal user experience across various Android devices.

P a g e | 14

ii. Intuitive Navigation: The application employs a well-structured navigation hierarchy with

intuitive menus, buttons, and icons, making it easy for users to navigate between different

functionalities.

iii. User-Friendly Forms: Forms for adding expenses, setting budgets, and managing

categories are designed to be user-friendly, with clear labels, input validation, and error

handling.

iv. Visual Feedback: The system provides visual feedback, such as success messages, error

alerts, and progress indicators, to keep users informed about the status of their actions.

v. Consistent Theme and Branding: A consistent color scheme, typography, and branding

elements are applied throughout the UI to enhance the overall aesthetic appeal and brand

recognition.

The UI design focuses on simplicity, ease of use, and visual appeal, ensuring a pleasant and efficient

user experience while interacting with the Expense Tracker System.

Overall, the Expense Tracker System's system design encompasses modularization for better

maintainability, data integrity constraints for consistency, appropriate database design, a combination

of procedural and object-oriented design principles, and a user interface design that prioritizes

usability.

P a g e | 15

CODING

1. Main Activity:

package com.example.expensetracker;

import androidx.annotation.NonNull;

import androidx.appcompat.app.AppCompatActivity;

import android.app.ProgressDialog;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.ProgressBar;

import android.widget.Toast;

import com.example.expensetracker.databinding.ActivityMainBinding;

import com.google.android.gms.tasks.OnFailureListener;

import com.google.android.gms.tasks.OnSuccessListener;

import com.google.firebase.auth.AuthResult;

import com.google.firebase.auth.FirebaseAuth;

public class MainActivity extends AppCompatActivity {

 ActivityMainBinding binding;

 FirebaseAuth firebaseAuth;

// ProgressBar pb = findViewById(R.id.progress_bar);

 private long pressedTime;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding=ActivityMainBinding.inflate(getLayoutInflater());

 //for disabling dark mode

P a g e | 16

//for progressbar

//

 setContentView(binding.getRoot());

 firebaseAuth= FirebaseAuth.getInstance();

 //for hiding actionbar

 if (getSupportActionBar() != null) {

 getSupportActionBar().hide();

 }

 //to go to sign-up page

 binding.gotosignupscreen.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Intent intent = new Intent(MainActivity.this,SignUpActivity.class);

 try{

 startActivity(intent);

 }catch(Exception e){

 }

 }

 });

 //for login button

 binding.loginButton.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 String email=binding.emailLogin.getText().toString().trim();

 String password =binding.passwordLogin.getText().toString().trim();

 if(email.isEmpty()||password.isEmpty()){

 Toast.makeText(MainActivity.this,"Error: This field/s cannot be

empty",Toast.LENGTH_SHORT).show();

 return;

 }

P a g e | 17

 firebaseAuth.signInWithEmailAndPassword(email,password)

 .addOnSuccessListener(new OnSuccessListener<AuthResult>() {

 @Override

 public void onSuccess(AuthResult authResult) {

 try{

Toast.makeText(MainActivity.this,"Success!",Toast.LENGTH_SHORT).show();

 startActivity(new Intent(MainActivity.this,DashboardActivity.class));

 }catch(Exception e){

 }

 }

 })

 .addOnFailureListener(new OnFailureListener() {

 @Override

 public void onFailure(@NonNull Exception e) {

Toast.makeText(MainActivity.this,e.getMessage(),Toast.LENGTH_SHORT).show();

 }

 });

 }

 });

 //if already logged directly to dashboard

 }

 //Double press to exit

 public void onBackPressed(){

 if (pressedTime + 2000 > System.currentTimeMillis()) {

 super.onBackPressed();

 finish();

P a g e | 18

 } else {

 Toast.makeText(getBaseContext(), "Press back again to exit",

Toast.LENGTH_SHORT).show();

 }

 pressedTime = System.currentTimeMillis();

 }

}

2. DashBoard Activity:

package com.example.expensetracker;

import androidx.annotation.NonNull;

import androidx.appcompat.app.AppCompatActivity;

import androidx.recyclerview.widget.LinearLayoutManager;

import android.content.Intent;

import android.os.Bundle;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.Toast;

import android.widget.Toolbar;

import com.example.expensetracker.databinding.ActivityDashboardBinding;

import com.github.mikephil.charting.charts.PieChart;

import com.github.mikephil.charting.components.Description;

import com.github.mikephil.charting.data.PieData;

import com.github.mikephil.charting.data.PieDataSet;

import com.github.mikephil.charting.data.PieEntry;

import com.google.android.gms.tasks.OnSuccessListener;

import com.google.firebase.auth.FirebaseAuth;

import com.google.firebase.auth.FirebaseUser;

P a g e | 19

import com.google.firebase.firestore.DocumentSnapshot;

import com.google.firebase.firestore.FirebaseFirestore;

import com.google.firebase.firestore.QuerySnapshot;

import java.util.ArrayList;

import java.util.List;

public class DashboardActivity extends AppCompatActivity implements OnItemsClick{

 ActivityDashboardBinding binding;

 private ExpenseAdapter expenseAdapter;

 //Intent intent ;

 private long income,expense=0;

 private long pressedTime;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityDashboardBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 getSupportActionBar().setDisplayHomeAsUpEnabled(true);

 expenseAdapter = new ExpenseAdapter(this,this);

 binding.recycler.setAdapter(expenseAdapter);

 binding.recycler.setLayoutManager(new LinearLayoutManager(this));

// intent = new Intent(DashboardActivity.this,AddExpenseActivity.class);

 //for add button

 binding.add.setOnClickListener(new View.OnClickListener() {

 private int count =0;

 @Override

 public void onClick(View view) {

P a g e | 20

 count++;

 if(count%2==0){

 findViewById(R.id.add_expense).setVisibility(View.GONE);

 findViewById(R.id.add_income).setVisibility(View.GONE);

 }else {

 findViewById(R.id.add_expense).setVisibility(view.VISIBLE);

 findViewById(R.id.add_income).setVisibility(View.VISIBLE);

 }

 }

 });

 //When Add income is pressed

 binding.addIncome.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Intent intent = new Intent(DashboardActivity.this,AddExpenseActivity.class);

 intent.putExtra("type","Income");

 startActivity(intent);

 }

 });

 //When Add Expenses is pressed

 binding.addExpense.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Intent intent = new Intent(DashboardActivity.this,AddExpenseActivity.class);

 intent.putExtra("type","Expense");

 startActivity(intent);

 }

 });

 }

P a g e | 21

 //For menu options

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // menu.add("User");

 menu.add("Logout");

 return super.onCreateOptionsMenu(menu);

 }

 //for clicking on menu options

 @Override

 public boolean onOptionsItemSelected(@NonNull MenuItem item) {

 if(item.getTitle().equals("Logout"));

 getLogout();

 return super.onOptionsItemSelected(item);

 }

 private void getLogout() {

 FirebaseAuth.getInstance().signOut();

 Intent intent = new Intent(DashboardActivity.this,MainActivity.class);

 startActivity(intent);

 }

 //function for double press to exit

 public void onBackPressed() {

 if (pressedTime + 2000 > System.currentTimeMillis()) {

 super.onBackPressed();

 finish();

 } else {

 Toast.makeText(getBaseContext(), "Press back again to exit",

Toast.LENGTH_SHORT).show();

 }

 pressedTime = System.currentTimeMillis();

P a g e | 22

 }

 @Override

 protected void onResume() {

 super.onResume();

 income=expense=0;

 getData();

 }

//For Fetching the data from Firebase

 private void getData() {

 FirebaseFirestore

 .getInstance()

 .collection("expenses")

 .whereEqualTo("uid",FirebaseAuth.getInstance().getUid())

 .get()

 .addOnSuccessListener(new OnSuccessListener<QuerySnapshot>() {

 @Override

 public void onSuccess(QuerySnapshot queryDocumentSnapshots) {

 expenseAdapter.clear();

 List<DocumentSnapshot> dsList =queryDocumentSnapshots.getDocuments();

 for(DocumentSnapshot ds:dsList){

 ExpenseModel expenseModel=ds.toObject(ExpenseModel.class);

 if(expenseModel.getType().equals("Income")){

 income+=expenseModel.getAmount();

 }else{

 expense+=expenseModel.getAmount();

 }

 expenseAdapter.add(expenseModel);

 }

 setUpGraph();

 }

 });

P a g e | 23

 }

//For Entry in PieChart

 private void setUpGraph() {

 List<PieEntry> pieEntryList = new ArrayList<>();

 List<Integer> colorsList = new ArrayList<>();

 if(income!=0){

 pieEntryList.add(new PieEntry(income,"Income"));

 colorsList.add(getResources().getColor(R.color.teal_700));

 }

 if(expense!=0){

 pieEntryList.add(new PieEntry(expense,"Expense"));

 colorsList.add(getResources().getColor(R.color.red));

 }

 String graph_details;

 if(income>expense){

 graph_details= "| Balance: " +(income-expense);

 }

 else{

 graph_details="| Expense Exceeded: "+(income-expense);

 }

 //For PieChart Representation

 PieDataSet pieDataSet = new PieDataSet(pieEntryList,graph_details);

 pieDataSet.setColors(colorsList);

 pieDataSet.setValueTextColor(getResources().getColor(R.color.white));

 pieDataSet.setValueTextSize(17);

 PieData pieData=new PieData(pieDataSet);

 binding.pieChart.setData(pieData);

 binding.pieChart.invalidate();

P a g e | 24

 binding.pieChart.getDescription().setEnabled(false);

 }

 @Override

 public void onClick(ExpenseModel expenseModel) {

 Intent intent = new Intent(DashboardActivity.this,AddExpenseActivity.class);

 intent.putExtra("model",expenseModel);

 startActivity(intent);

 }

}

3. Time and Date Maintaining Activity:

public class ExpenseAdapter extends RecyclerView.Adapter<ExpenseAdapter.MyViewHolder> {

 private Context context;

 private OnItemsClick onItemsClick;

 private List<ExpenseModel> expenseModelList;

 public ExpenseAdapter(Context context,OnItemsClick onItemsClick){

 this.context=context;

 expenseModelList = new ArrayList<>();

 this.onItemsClick=onItemsClick;

 }

 public void add(ExpenseModel expenseModel){

 expenseModelList.add(expenseModel);

 notifyDataSetChanged();

 }

 public void clear(){

 expenseModelList.clear();

 notifyDataSetChanged();

 }

P a g e | 25

 @NonNull

 @Override

 public MyViewHolder onCreateViewHolder(@NonNull ViewGroup parent, int viewType) {

 View view =

LayoutInflater.from(parent.getContext()).inflate(R.layout.expense_row,parent,false);

 return new MyViewHolder(view);

 }

 @Override

 public void onBindViewHolder(@NonNull MyViewHolder holder, int position) {

 ExpenseModel expenseModel=expenseModelList.get(position);

 //for time

 holder.date.setText(String.valueOf(getTimeDate(expenseModel.getTime())));

 holder.note.setText(expenseModel.getNote());

 holder.category.setText(expenseModel.getCategory());

 holder.amount.setText(String.valueOf(expenseModel.getAmount()));

 holder.itemView.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 onItemsClick.onClick(expenseModel);

 }

 });

 }

 @Override

 public int getItemCount() {

 return expenseModelList.size();

 }

 public class MyViewHolder extends RecyclerView.ViewHolder{

 private TextView note,category,amount,date;

P a g e | 26

 public MyViewHolder(@NotNull View itemView){

 super(itemView);

 date=itemView.findViewById(R.id.date);

 note=itemView.findViewById(R.id.note);

 category=itemView.findViewById(R.id.category);

 amount=itemView.findViewById(R.id.amount);

 }

 }

 //For Date

 public static String getTimeDate(long timestamp){

 try{

 Date date = (new Date(timestamp));

 //new trial

 SimpleDateFormat sdf= new SimpleDateFormat("EEE, MMM d, yyyy HH:mm",

Locale.getDefault());

 return sdf.format(date);

 }catch(Exception e){

 return "date";

 }

 }

}

4. SignUp Activity:

package com.example.expensetracker;

import androidx.annotation.NonNull;

import androidx.appcompat.app.AppCompatActivity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

P a g e | 27

import android.widget.Toast;

import com.example.expensetracker.databinding.ActivityMainBinding;

import com.example.expensetracker.databinding.ActivitySignUpBinding;

import com.google.android.gms.tasks.OnFailureListener;

import com.google.android.gms.tasks.OnSuccessListener;

import com.google.firebase.auth.AuthResult;

import com.google.firebase.auth.FirebaseAuth;

public class SignUpActivity extends AppCompatActivity {

 ActivitySignUpBinding binding;

 FirebaseAuth firebaseAuth;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivitySignUpBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 //for hiding action bar

 if (getSupportActionBar() != null) {

 getSupportActionBar().hide();

 }

 firebaseAuth = FirebaseAuth.getInstance();

 //for going to log in page

 binding.gottologin.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Intent intent = new Intent(SignUpActivity.this,MainActivity.class);

 try{

 startActivity(intent);

P a g e | 28

 }catch(Exception e){

 }

 }

 });

 //For creating user

 binding.buttonSignup.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 String email=binding.emailSignup.getText().toString();

 String password = binding.passwordSignup.getText().toString();

 if(email.trim().length()<=0||password.trim().length()<=0){

 return;

 }

firebaseAuth.createUserWithEmailAndPassword(email,password).addOnSuccessListener(new

OnSuccessListener<AuthResult>() {

 @Override

 public void onSuccess(AuthResult authResult) {

 Toast.makeText(SignUpActivity.this,"User

Created",Toast.LENGTH_SHORT).show();

 startActivity(new Intent(SignUpActivity.this,MainActivity.class));

 }

 }).addOnFailureListener(new OnFailureListener() {

 @Override

 public void onFailure(@NonNull Exception e) {

Toast.makeText(SignUpActivity.this,e.getMessage(),Toast.LENGTH_SHORT).show();

 }

 });

 }

P a g e | 29

 });

 }

 public void onBackPressed(){

 Intent intent = new Intent(SignUpActivity.this,MainActivity.class);

 startActivity(intent);

 super.onBackPressed();

 finish();

 }

}

5. Activity_Main XML:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity"

 android:paddingLeft="10dp"

 android:paddingRight="10dp"

 android:orientation="vertical"

 android:background="@drawable/loginbackground"

 >

 <TextView

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_marginTop="135dp"

 android:text="Expense Manager"

 android:textAlignment="center"

 android:textColor="@color/white"

P a g e | 30

 android:textSize="24sp"

 android:textStyle="bold"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 <TextView

 android:layout_marginTop="20dp"

 android:textStyle="bold"

 android:textColor="@color/white"

 android:textAlignment="center"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="LogIn"

 android:textAllCaps="true"

 android:textSize="24sp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 <EditText

 android:id="@+id/email_login"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_marginTop="30dp"

 android:background="@drawable/edit_text_background"

 android:hint="Write your email here"

 android:padding="15dp"

 android:textAlignment="center" />

 <EditText

P a g e | 31

 android:id="@+id/password_login"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_marginTop="30dp"

 android:background="@drawable/edit_text_background"

 android:hint="Write your password"

 android:inputType="textPassword"

 android:padding="12dp"

 android:textAlignment="center" />

 <TextView

 android:id="@+id/forgotpassword"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="right"

 android:layout_marginTop="8sp"

 android:gravity="center"

 android:padding="10dp"

 android:text="Forgot Password?"

 android:textSize="14dp"

 android:textStyle="bold" />

 <ProgressBar

 android:background="@drawable/progressbar_style"

 android:id="@+id/progress_bar"

 android:padding="8dp"

 android:layout_width="40dp"

 android:layout_height="40dp"

 android:elevation="10dp"

 android:layout_gravity="center"

 android:visibility="invisible"/>

P a g e | 32

<!-- <RelativeLayout-->

<!-- android:layout_width="wrap_content"-->

<!-- android:layout_height="wrap_content"-->

<!-- android:layout_gravity="center"-->

<!-- android:background="@drawable/progressbar_style">-->

<!-- <ProgressBar-->

<!-- android:id="@+id/progress_bar"-->

<!-- android:padding="2dp"-->

<!-- android:layout_width="40dp"-->

<!-- android:layout_height="40dp"-->

<!-- android:elevation="10dp"-->

<!-- android:visibility="gone"/>-->

<!-- </RelativeLayout>-->

 <Button

 android:id="@+id/login_button"

 android:layout_width="wrap_content"

 android:layout_height="58dp"

 android:layout_gravity="center"

 android:layout_marginTop="-30dp"

 android:backgroundTint="@color/white"

 android:text="Login"

 android:textColor="@color/black" />

 <TextView

 android:id="@+id/gotosignupscreen"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center"

 android:layout_marginLeft="10dp"

 android:layout_marginTop="20dp"

 android:padding="20dp"

 android:text="New User? Register here!"

P a g e | 33

 android:textColor="@color/white"

 android:textSize="20sp" />

</LinearLayout>

6. DashBoard Activity XML:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".DashboardActivity"

 android:padding="10dp"

 >

 <LinearLayout

 android:orientation="vertical"

 android:layout_width="match_parent"

 android:layout_height="wrap_content">

 <androidx.cardview.widget.CardView

 android:layout_width="match_parent"

 android:layout_height="300dp"

 android:layout_margin="5dp">

 <com.github.mikephil.charting.charts.PieChart

 android:id="@+id/pieChart"

 android:layout_width="match_parent"

 android:layout_height="match_parent"/>

 </androidx.cardview.widget.CardView>

 <androidx.recyclerview.widget.RecyclerView

 android:id="@+id/recycler"

 android:layout_width="match_parent"

P a g e | 34

 android:layout_height="350dp"

 android:layout_marginTop="10dp" />

 </LinearLayout>

 <RelativeLayout

 android:layout_width="wrap_content"

 android:layout_height="64dp"

 android:layout_alignParentBottom="true"

 android:orientation="horizontal">

 <TextView

 android:id="@+id/add_income"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/add"

 android:layout_alignParentBottom="true"

 android:layout_marginLeft="-130dp"

 android:layout_marginRight="-142dp"

 android:layout_marginBottom="14dp"

 android:layout_weight="1"

 android:background="@drawable/rounded_corners"

 android:gravity="center"

 android:padding="15dp"

 android:text="Add Income"

 android:textColor="@color/white"

 android:textSize="16sp"

 android:visibility="gone" />

 <TextView

 android:id="@+id/add_expense"

 android:layout_width="wrap_content"

P a g e | 35

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:layout_marginLeft="10dp"

 android:layout_marginBottom="14dp"

 android:layout_weight="1"

 android:background="@drawable/rounded_corners"

 android:gravity="center"

 android:padding="15dp"

 android:text="Add Expense"

 android:textColor="@color/white"

 android:textSize="16sp"

 android:visibility="gone" />

 <ImageView

 android:id="@+id/add"

 android:layout_width="77dp"

 android:layout_height="67dp"

 android:layout_alignRight="@+id/add_expense"

 android:layout_alignParentRight="true"

 android:layout_alignParentBottom="true"

 android:layout_gravity="center"

 android:layout_marginRight="0dp"

 android:layout_marginBottom="0dp"

 android:baselineAlignBottom="true"

 android:src="@drawable/add_view" />

 </RelativeLayout>

</RelativeLayout>

P a g e | 36

TESTING

1. Some Screenshots of our Application during Testing

Step 1. : First of all, we open the application.

Step 2. : Then the following interfaces come up –

P a g e | 37

P a g e | 38

P a g e | 39

ii. Debugging and Code Improvement:

During the testing process, debugging techniques are applied to identify and resolve defects or issues

within the Expense Tracker System. Debugging involves analyzing error logs, examining code, and

using debugging tools to locate and fix errors, ensuring the proper functioning of the application.

Code improvement is an ongoing process that aims to enhance the quality, readability, and

maintainability of the codebase. This includes:

i. Refactoring: The code is optimized and restructured without changing its external

behavior. This improves code clarity, eliminates code duplication, and enhances code

maintainability.

ii. Code Review: Peer code reviews are conducted to ensure adherence to coding standards,

identify potential issues, and provide suggestions for code improvement. This helps identify

and correct any code-related issues early in the development process.

iii. Performance Optimization: The code is analyzed to identify performance bottlenecks,

and optimizations are implemented to improve the application's speed and efficiency. This

may involve optimizing database queries, reducing resource usage, or implementing caching

mechanisms.

iv. Error Handling and Exception Handling: Proper error handling mechanisms are

implemented to gracefully handle exceptions and prevent application crashes. Error logs are

generated to aid in debugging and provide insights into potential issues.

By incorporating effective debugging techniques and continuously improving the codebase, the

Expense Tracker System ensures a robust and reliable application.

Overall, testing techniques, strategies, and test case designs are employed to validate the Expense

Tracker System's functionality, while debugging and code improvement practices help enhance the

quality and stability of the application.

P a g e | 40

SYSTEM SECURITY MEASURES

The Expense Tracker System incorporates various security measures to ensure the protection of user

data and maintain the integrity of the application. The following security measures are implemented:

i. Database/Data Security:

1. Encryption: User data, including passwords and sensitive information, is encrypted using

strong encryption algorithms before storing them in the database. Encryption ensures that

even if the database is compromised, the data remains secure and inaccessible to unauthorized

users.

2. Secure Database Connection: The communication between the application and the

database is secured using secure protocols, such as HTTPS or SSL/TLS. This encryption

ensures that data transmitted between the application and the database remains confidential

and cannot be intercepted or tampered with.

3. Data Backup and Recovery: Regular backups of the database are taken to prevent data

loss in case of any unforeseen incidents. The backups are stored securely, following best

practices, and can be used to restore the system to a previous state if necessary.

4. Database Access Control: Access to the database is restricted to authorized personnel

only. Strong authentication mechanisms, such as username/password combinations or multi-

factor authentication, are implemented to prevent unauthorized access to the database.

ii. Creation of User Profiles and Access Rights:

1. User Authentication: The Expense Tracker System employs a secure authentication

mechanism to verify the identity of users. Users are required to provide valid credentials,

such as a unique username and password, to access the system. This authentication process

ensures that only authorized users can log in and access their expense data.

2. User Access Rights: Different access levels and permissions are assigned to user profiles

P a g e | 41

based on their roles and responsibilities within the system. This prevents unauthorized access

to sensitive functionalities and ensures that users can only perform actions for which they

have proper authorization.

3. Password Policies: The system enforces strong password policies, including password

complexity requirements and regular password expiration. This ensures that users create and

maintain secure passwords, reducing the risk of unauthorized access due to weak or

compromised credentials.

4. Session Management: The system implements secure session management techniques to

manage user sessions effectively. This includes using session tokens, enforcing session

timeouts, and securely managing session data to prevent session hijacking or unauthorized

session reuse.

Overall, the Expense Tracker System incorporates database and data security measures, such as

encryption and secure connections, to protect user data. The creation of user profiles with appropriate

access rights, along with strong authentication mechanisms and role-based access control, ensures that

only authorized users can access and manipulate the system's functionalities. These security measures

help safeguard user information and maintain the confidentiality and integrity of the Expense Tracker

System.

COST ESTIMATION OF THE PROJECT

Cost estimation is an essential aspect of project planning and management. The Expense Tracker

System's cost estimation takes into account various factors, including development resources,

infrastructure, and ongoing maintenance. The following cost components are considered:

i. Development Costs: This includes the cost of development resources, such as software

engineers, designers, and testers. The estimated effort required to complete the project, based

on the scope and complexity, is multiplied by the appropriate hourly rates to determine the

development cost.

ii. Infrastructure Costs: The infrastructure costs cover the hardware and software resources

P a g e | 42

required to develop and deploy the application. This includes the cost of development tools,

software licenses, servers, and hosting services.

iii. Maintenance Costs: Ongoing maintenance costs are estimated to ensure the system's

smooth operation, bug fixes, and updates. These costs may include the hosting fees and the

cost of supporting software.

iv. Miscellaneous Costs: Miscellaneous costs, such as training, documentation, and customer

support, are also considered in the cost estimation.

REPORTS

The Expense Tracker System generates various reports to provide users with insights into their

expenses and financial management. Sample layouts for the reports can include:

i. Expense Summary Report: This report provides an overview of the user's total

expenses, categorized by different expense categories (e.g., food, transportation, utilities). It

includes a pie chart to visualize the distribution of expenses.

ii. Budget Analysis Report: This report compares the user's actual expenses against their

set budget limits. It highlights categories where the user has exceeded the budget and provides

recommendations for better budget management.

iii. Monthly Expense Trend Report: This report shows the user's monthly expenses over

a specific period, allowing them to identify spending patterns and trends.

iv. Category-wise Expense Report: This report provides a breakdown of expenses by

category, allowing users to analyze their spending habits in detail. It may include a table or

bar chart displaying the total expenses for each category.

P a g e | 43

SAMPLE LAYOUT

P a g e | 44

CONCLUSION

The Expense Tracker System is an Android application developed using Android Studio and Java

programming language, with Firebase as the backend service provider. The project successfully

addresses the need for a convenient and efficient expense-tracking solution for users. Throughout the

development process, various system analysis and design techniques were applied, including software

requirement specifications, modularization, data integrity, database design, and user interface design.

The testing phase played a crucial role in ensuring the reliability and functionality of the Expense

Tracker System. Testing techniques such as unit testing, integration testing, functional testing, and

performance testing were employed to identify and resolve any defects. Debugging and code

improvement practices were implemented to enhance the quality and maintainability of the codebase.

System security measures were implemented to protect user data and maintain data integrity. This

included database and data security through encryption and access control mechanisms, as well as the

creation of user profiles and access rights. Firebase Authentication was utilized for secure user

authentication.

The cost estimation of the project considered various factors such as development costs, infrastructure

costs, maintenance costs, and miscellaneous costs. This estimation provided an understanding of the

financial aspects associated with the development and maintenance of the Expense Tracker System.

The Expense Tracker System generates informative reports, allowing users to gain insights into their

expenses and make informed financial decisions. Sample layouts for reports were provided, including

expense summary reports, budget analysis reports, and customizable reports with data visualizations.

P a g e | 45

REFERENCE

[1] Creating Gantt Charts. (2016). Retrieved 09 02, 2016, from Gantt Charts Web site:

http://www.gantt.com/creating-gantt-charts.html

[2] Entity Relationship. (2016). Retrieved 09 02, 2016, from Creately Website:

https://creately.com/app/#

[3] Fowler, M. (2004).UML Distilled Third Edition A Brief Guide To TheStandard Object

Modelling Language.Addison-Wesely. Retrieved12 14, 2016

[4] Krutchten, P. (2000).The Rational Unified Process An IntroductionSecond Edition.Addison-

Wesely. Retrieved 12 13, 2016

[5] Larman, C. (2008).Applying UML and Patterns. Pearson Education, Inc.Retrieved 08 28, 2016

[6] UML-Diagram. (2016). Retrieved 12 16, 2016, from UML-DiagramWebsite: http://www.uml-

diagrams.org/class-diagrams-examples.html

[7] MP Android chart created by Philipp Jahoda .

Website : https://github.com/PhilJay/MPAndroidChart

[8] Firebase basics learning. Website : https://firebase.google.com/docs

[9] Android Studio Learning. Website: https://developer.android.com/docs

[10] Geeks For Geeks. Website: https://www.geeksforgeeks.org/android-projects-from-basic-to-

advanced-level/

[11] Stack overflow: https://stackoverflow.com/questions/tagged/android-studio

[12] YouTube Video link : https://www.youtube.com/watch?v=qPlQrjDe-

yE&pp=ygUXbG9naW4gaW4gYW5kcmlvZCBzdHVkaW8%3D

http://www.gantt.com/creating-gantt-charts.html
https://github.com/PhilJay/MPAndroidChart
https://firebase.google.com/docs
https://stackoverflow.com/questions/tagged/android-studio

P a g e | 46

